
ESTIMATING CAMERA OVERLAP IN LARGE AND GROWING NETWORKS

Henry Detmold, Anton van den Hengel, Anthony Dick, Alex Cichowski, Rhys Hill,
Ekim Kocadag, Yuval Yarom, Katrina Falkner and David S. Munro

{henry,anton,ard,alexc,rhys,ekim,yval,katrina,dave}@cs.adelaide.edu.au

The Australian Centre for Visual Technologies
The University of Adelaide

ABSTRACT

Large-scale intelligent video surveillance requires an accurate
estimate of the relationships between the fields of view of the
cameras in the network. The exclusion approach is the only
method currently capable of performing online estimation of
camera overlap for networks of more than 100 cameras, and
implementations have demonstrated the capability to support
networks of 1000 cameras. However, these implementations
include a centralised processing component, with the prac-
tical result that the resources (in particular, memory) of the
central processor limit the size of the network that can be sup-
ported. In this paper, we describe a new, partitioned, imple-
mentation of exclusion, suitable for deployment to a cluster of
commodity servers. Results for this implementation demon-
strate support for significantly larger camera networks than
was previously feasible. Furthermore, the nature of the par-
titioning scheme enables incremental extension of system ca-
pacity through the addition of more servers, without interrupt-
ing the existing system. Finally, formulae for requirements
of system memory and bandwidth resources, verified by ex-
perimental results, are derived to assist engineers seeking to
implement the technique.

1. INTRODUCTION

Video surveillance networks are increasing in scale: instal-
lations of 50, 000 camera surveillance networks are now be-
ing reported [1], and networks of more than 100 cameras are
common place. It has been reported that Washington D.C.
police have access to 5, 000 cameras [2], for instance. Even
for networks of ten cameras, human operators require assis-
tance from software to make sense of the vast amounts of data
in video streams, whether it be to monitor ongoing activity
or to search through archives for a specific event. Computer
vision research has made significant progress in automating
processing on the very small scale (see [3] for a survey), but
there has been less progress in scaling these techniques to the
much larger networks now being deployed.
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A promising approach to tackling large surveillance net-
works is to identify a core set of network wide common ser-
vices, needed by many visual processing approaches, and then
focus research effort on providing these services on large net-
works. A key example of such a service is estimation of ac-
tivity topology. The activity topology of surveillance network
is a graph describing the spatial and temporal relationships
between the fields of view of the network’s cameras. An ac-
curate and up-to-date estimate of activity topology supports
reasoning about events that span multiple cameras. In particu-
lar, activity topology supports efficient solution of the camera
handover problem, which is concerned with the continuation
of visual processing (e.g. tracking) when a target leaves one
camera’s field of view and needs to be resumed using data
from other cameras (i.e. those adjacent in the topology).

The exclusion approach [4] has two desirable properties
as an implementation of activity topology estimation. First
of all, it produces topology estimates of sufficient accuracy
(precision and recall) to be useful in tracking [5]. Secondly, it
has proven ability to provide on-line estimation for networks
of up to 1,000 cameras [6], whereas no other approach has
demonstrated the ability to scale beyond 100 cameras.

However, previous implementations of exclusion, includ-
ing that described in [6] require a central server component.
Specifically, the scale of the surveillance systems these imple-
mentation can support in limited by the physical memory on
this central server, with the practical consequence that for sys-
tems with more than a few thousand cameras, it is not possible
to use commodity equipment for the central server, and sys-
tem implementation thus becomes prohibitively expensive.

The first major contribution of this paper is that it re-
ports experimental results for a decentralised and partitioned
memory implementation of activity topology estimation by
exclusion. This overcomes previous implementations’ de-
pendence on a single central server, and as a result provides
a much cost effective approach to implementation of exclu-
sion for large surveillance networks. Results comparing par-
titioned and non-partitioned exclusion demonstrate that ad-
vantages of partitioning outweigh the costs. The second ma-
jor contribution concerns the properties of the partitioning
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scheme. Specifically, the scheme enables partitions to execute
independently. This both enhances performance (through in-
creased parallelism) and, more importantly, permits partitions
to be added without affecting existing partitions. This prop-
erty results in an activity topology estimation sub-system that
can grow in capacity as the number of cameras increases,
whilst remaining on-line 24 × 7. The final contribution of
this paper is the derivation of formulae for the network and
memory requirements of partitioned exclusion. These formu-
lae, verified by experimental results, enable engineers seeking
to use exclusion to determine the capacity required from the
implementation platform.

2. ACTIVITY TOPOLOGY AND EXCLUSION

An estimate of the activity topology of a surveillance network
makes feasible a number of processes critical within on-line
video surveillance. The nodes of the activity topology graph
are the fields of view of individual cameras, or alternatively
regions within those fields of view. Each such region is la-
belled a cell and denoted cx. The edges of the graph repre-
sent the connections between cells. These connections may
be used to represent the overlap of the cells or, by includ-
ing timing information, to describe the movement of targets
through the graph. Overlap is an important special case of the
more general notion of topology, and we focus on this special
case in this paper. Our approach to the estimation of activity
topology is termed exclusion.

2.1. Formulation of Activity Topology

The activity topology graph is defined as follows:

1. Edges are directed, such that (ci, cj) represents the flow
from ci to cj whereas (cj , ci) represents the (distinct)
flow from cj to ci. Directed edges can be converted
to undirected edges if required, but the exclusion algo-
rithm estimates each direction independently and thus
we retain this information.

2. Each edge has a set of labels, p[a,b]
i,j for various time

delay intervals [a, b], each giving the probability that
activity leaving ci arrives at cj after a delay between a
and b. In this paper, each edge has exactly one such la-
bel, that for [−ε, ε] where ε is some small value large
enough to account for clock skew between cameras.
Thus p[−ε,ε]

i,j describes overlap between cameras.

Actual activity topologies are constrained by building layout,
camera placement and other factors. Typical topologies con-
tain sub-graphs with many edges between the nodes within
the same sub-graph and few edges between nodes within dif-
ferent sub-graphs. These nearly isolated cliques are termed
zones within the activity topology. Figure 1 shows a recov-
ered activity topology for a network of over a hundred cam-
eras, with zones represented by circles.

Fig. 1. Estimated activity topology for a real camera net-
work. Edges linking cameras are shown as coloured lines,
while zones are pictured as circles. Singletons are omitted.

2.2. Estimating Activity Topology by Exclusion

Consider the problem of determining overlap for a set of N
cameras. The set of cameras generates N images at time t,
with each image partitioned into a grid of cells. Application
of Stauffer & Grimson foreground detection [7] to all camera
images produces a set of foreground blobs, each of which can
be summarised into a position given by a single cell within the
containing camera. At any given time t, each cell is labelled
occupied or unoccupied depending on whether it contains a
summarised foreground object.

Exclusion is based on the observation that a cell which is
occupied at time t cannot be an image of the same area as any
other cell that is simultaneously unoccupied. Given that cells
tend to be unoccupied more often than they are occupied, this
observation can be used to eliminate a large number of cell
pairs as potentially viewing the same area at each time instant.
The process of elimination can be repeated for each frame of
video to rapidly reduce the number of pairs of image cells that
could possibly overlap. This is the opposite of most previous
approaches: rather than accumulate positive information over
time about overlap between cells, we seek negative informa-
tion allowing the instant elimination of impossible overlaps.
Such overlaps are referred to as having been excluded [4].

In this paper, the focus is on the performance of a new dis-
tributed implementation of exclusion to detecting overlap in
large surveillance networks. Note however, that the technique
is not limited to this special case of activity topology, but can
also be applied to the general case (connections between non-
overlapping cameras) through the use of varying time offsets
in the operands to the exclusion operation. Future papers will
evaluate this scenario.



3. PARTITIONING OF THE EXCLUSION MATRIX

Exclusion estimates camera overlap through the maintenance
of an overlap certainty matrix, Cij , which gives the likelihood
that the regions of the scene corresponding to cells ci and cj
overlap. The overlap estimate is further strengthened by ex-
ploitation of the bi-directional nature of overlap, we consider
cells ci and cj to overlap only when the following Boolean
function is true:

Xij = Cij > C∗ ∧ Cji > C∗ (1)

with C∗ a threshold value. The effect of varying this thresh-
old, in terms of the precision and recall achieved by the esti-
mator, is extensively evaluated in [5].

The overlap certainty matrix is defined as follows:

Cij =
Oij − Eij

Oij
(2)

whereOij is the exclusion opportunity matrix, giving the num-
ber of times an exclusion contradicting overlap of cells ci and
cj could possibly have been found, and Eij is the exclusion
matrix, giving the number of times an exclusion contradict-
ing overlap of cells ci and cj has been found. The precise
definition of Oij is:

Oij =
T∑
t=1

oit ∧ vjt (3)

where vjt is true if data for cell cj at time t is available, and
oit is true if cell ci is occupied at time t. Similarly, we define:

Eij =
T∑
t=1

oit 	 pjt. (4)

where pjt is true if cell cj or any of its immediate neighbours
are occupied at time j and 	 is an operator which has the
value true if the left operand is true and the right operand is
false. It is not necessary to record the vjt, oit and pjt values in
persistent matrices; instead we acquire and process this data
in relatively short batches (a few seconds) and incorporate the
results into the persistent Oij and Eij matrices.

In previous implementations of exclusion, these matri-
ces are maintained in the memory of a centralised process-
ing node. Furthermore, because these matrices are large and
dense (at least in the case of Eij), the memory available on
this central node places an overall limit on the size of net-
work that can be supported. For example, an instantiation of
exclusion with 108 (12 × 9) cells per camera, 1000 cameras,
and 16-bit (2 byte) exclusion counts will require:

(108× 1000)2 × 2 = 23, 328, 000, 000

bytes (or approximately 24GB) to represent Eij . Some op-
timisation is possible; for example, our previously reported

implementation [6] used byte-sized counts and a selective re-
set procedure (division by two of sections of by Eij and Oij ,
so as to maintain approximately correct Cji ratios) to support
1000 cameras within 12GB.

Nevertheless, there are two obstacles to further increases
in the scale of systems that can be built using exclusion:

1. The requirement that the whole exclusion matrix be
stored in a single server means that the memory (and
processing) capacity of that server limits the maximum
size of the networks that is feasible. For example, the
current limit for easily affordable server hardware is
less than 100GB, and only incremental improvements
can be expected, so centralised implementations of ex-
clusion are limited to supporting networks of a few thou-
sand cameras.

2. The requirement for n2 memory (however distributed)
means that even if it is possible to increase system scale
by the addition of more hardware, it becomes increas-
ingly expensive to do so, and at some point it ceases to
be feasible.

Both of these challenges need to be overcome; in this paper
we focus on the first.

3.1. Partitioning Requirements

Our approach is to partition the exclusion computation across
multiple computers. Each such computer is termed an exclu-
sion partition. The aims are as follows:

1. Distribute the memory required to store theEij andOij
matrices across multiple (affordable) computers.

2. Avoid communication (and in particular, synchronisa-
tion) between exclusion partitions, in order to permit
processing within each partition to proceed in parallel.

3. Permit the system to grow, through addition of exclu-
sion partitions, whilst the existing partitions continue
processing and hence the extant system remains online.

4. Quantify the volume of communication required be-
tween the exclusion partitions and the rest of the surveil-
lance system, and ensure that this requirement remains
within acceptable bounds.

5. Size of partitions to be uniform.

3.2. Partitioned System Model

The role of exclusion within a surveillance system is to derive
activity topology from occupancy. We adopt a layered ap-
proach, with an exclusion layer that consumes occupancy in-
formation (produced from a lower layer) and produces activ-
ity topology information (to be consumed by higher layers).



…

…

…

…

…

…

…

…

…

…

…

… ……

…

…

…

Detection Servers
Each server runs detection 

pipelines for several cameras 

Exclusion Servers
Each server computes 

exclusion for a region of the 
Eij matrix

Cameras 

Each detection server sends 
occupancy data to a subset 

of the exclusion servers 

Fig. 2. Architecture of partitioned system model

This system model is shown in Figure 2, with the exclusion
layer shown as a collection of exclusion partitions.

Topology estimates must be made available to higher lev-
els of the surveillance system. The possibilities include:

1. As exclusion partitions derive topology estimates they
forward significant changes in those estimates to a cen-
tral database. These changes include both increases in
likelihood of an edge in the topology and decreases in
likelihood. In the extreme, this includes edges disap-
pearing completely, reflecting changes in activity topol-
ogy over time, and hence those edges being removed
from the central topology database.

2. Option 1, but with the central database replaced with a
distributed database.

3. Higher layers obtain topology information by querying
the exclusion layer partition(s) holding it. In effect, the
exclusion partitions act as a distributed database.

The experiments reported in this paper concern only the es-
timation of activity topology by exclusion, not any further
use of the estimated topology within a surveillance system.
This is closest to option 3, where topology data is stored only
on exclusion partition nodes. Option 1 presents a simpler
query model, but has the risk that the centralised database be-
comes a bottleneck. Note, however, that because the topology
database only stores information for edges having a likelihood
exceeding some threshold, it remains sparse with respect to
the set of all possible edges, and thus avoids replicating the
(problematic) requirement for n2 memory on a single node.
Option 2 is a trade-off between the other two options.

Fig. 3. The partitioning scheme for 200 partitions

Parameter Definition
n the number of cameras.
N the number of partitions.
r the number of cells into which each cam-

era’s field of view is divided.
R the length of a half partition, in terms of

the number of distinct whole cameras for
which that half partition contains data.

Table 1. Partitioned Exclusion System Parameters

3.3. A Partitioning Scheme

Observe from Equation 1 that calculation of overlap (Xij) for
given i and j requires both Cij and Cji, and hence (from
Equation 2) each of Eij , Eji, Oij and Oji. Whilst it would
be possible to perform the final overlap calculation separately
from the calculation (and storage) of Eij and Oij , we assume
that it is not practically useful to do so, which implies that for
given i and j, each ofEij ,Eji,Oij andOji must reside in the
same partition (so as to avoid inter-partition communication).
This constraint drives our partitioning scheme, along with the
aims identified previously.

Figure 3 shows partitioning across 200 exclusion parti-
tions; each partition contains two distinct square regions of
the Eij matrix, such that the required symmetry is obtained.
These square regions are termed half partitions. The Oij ma-
trix can be partitioned in the same way. However, given that
the Oij matrix contains significant redundancy (the Oij val-
ues for all j in a given camera are the same), some optimisa-
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Fig. 4. Partitioned system parameter detail

tion is possible. Each of the square regions within Figure 3
contains sufficient rows and columns for several whole cam-
eras worth of data. Table 1 defines the system parameters for
partitioned exclusion, with Figure 4 illustrating the r and R
parameters. Note also:

R =
n√
2N

(5)

relates n, N and R where N ∈ 2N2 and N ≥ 2.
Now, for a given (cell) co-ordinate pair (i, j) within Eij

we can determine the partition co-ordinates, (I, J) of the half
partition containing the data for (i, j), as follows:

(I, J) = (
i

rR
,
j

rR
) (6)

From the partition co-ordinates of a given half partition, (I, J),
we determine the partition number of the (whole) partition to
which that half-partition belongs, using the following recur-
sively defined partition numbering function:

PN(I, J) =


PN(J, I) if J > I
PN(I − 1, J − 1) if I = J∧

I mod 2 = 1⌈
I2

2

⌉
+ J otherwise

(7)
This recursive function gives the partition numbers shown in
Figure 3. More importantly, it is used within the distributed
exclusion implementation to locate the partition responsible
for a given region ofEij . Detection pipelines producing occu-
pancy data use Equation 7 to determine the partitions to which
they should send that occupancy data, and clients querying
the activity topology may use it to locate the partition hold
the information they seek.

The inverse relation maps partition numbers to a set of
two half partition co-ordinate pairs. This set, P for a given
partition is:

P =
{
(I, J), (I, J) : J < J

}
(8)

The co-ordinate pair (I, J) is termed the upper half-partition,
and the pair (I, J) is termed the lower half-partition; they are
distinguished based on the y axis co-ordinate, as shown.

Now, the x co-ordinate of the upper half-partition, I , is a
function of the partition number, P :

I =
⌊√

2P
⌋

(9)

and the y co-ordinate of the upper half-partition, J , is a func-
tion of the partition number and the x co-ordinate:

J = P −

⌈
I
2

2

⌉
(10)

Combining equations 9 and 10 yields the following, upper
half-partition address function:

UHPA(P ) =

⌊√2P
⌋
, P −


⌊√

2P
⌋2

2


 (11)

Next, the lower half-partition co-ordinate pair, (I, J), is a
function of the upper half-partition co-ordinate pair, (I, J),
as follows:

(I, J) =

 (I + 1, J + 1) if I = J

(J, I) otherwise
(12)

Combining equations 9, 10 and 12 yields the following, lower
half-partition address function:

LHPA(P ) =



(⌊√
2P
⌋

+ 1,
(
P −

⌈
b√2Pc2

2

⌉)
+ 1
)

if
⌊√

2P
⌋

= P −
⌈
b√2Pc2

2

⌉
(
P −

⌈
b√2Pc2

2

⌉
,
⌊√

2P
⌋)

otherwise
(13)

Equations 11 and 13 define the partition co-ordinates of the
two half-partitions corresponding to a given partition number.
This is exploited in an implementation strategy whereby par-
tition creation is parameterised by partition number, and this
mapping is used to determine the two rectangular regions of
Eij to be stored in the partition.



Fig. 5. Expansion from 2 to 8 and then to 18 partiions

3.4. Incremental Expansion

A key property of the partitioning scheme is support for incre-
mental expansion of Eij and hence of the system. As shown
in Figure 5, new partitions, with higher partition numbers, can
be added on the right and bottom borders of the matrix, leav-
ing the existing partitions unchanged in both partition number
and content. Since the addition of new partitions is entirely
independent of the existing partitions, expansion can occur
whilst the system (i.e. the existing partitions) remains on-line.

Figure 5 shows expansion by two (partition) rows and
(partition) columns each time. The matrix must remain square,
and hence must grow by the same amount in each direction.
The implication is that when growth is necessary, a large num-
ber of new partitions must be added (not just one at a time).
Growth by two rows and columns at a time is the smallest
increment that ensures all partitions are exactly the same size.

Growth by one row and column can lead to the latest par-
tition on the diagonal being half the size of all the rest (it has
only one half partition instead of two). At worst, this leads
to under-utilisation of one computing node, and full utilisa-
tion will be restored at the next growth increment. It is also
worth noting that whilst partitions have to be of fixed size, the
mapping between partitions and computing nodes can be vir-
tualised, allowing, for example, more recently added nodes,
which are likely to have greater capacity, to be assigned more
than a single partition.

Now, the number of partitions, N is expressed in terms of
the length, L of the (square) partition grid:

N =
L2

2
(14)

Now suppose that at some point in its life time, a surveillance
system has N partitions. Growth by two partitions in each
direction results in partition grid length, L+ 2, and hence the
number of partitions in the system after growth, N ′, is:

N ′ =
(L+ 2)2

2
=
L2 + 4L+ 4

2
= N + 2L+ 2 (15)

The growth in the number of partitions is then:

N ′ −N = 2L+ 2 =
2n
R

+ 2 (16)

Parameter Definition
f the number of frames per units time pro-

cessed by the exclusion partitions.
d the maximum time which occupancy data

may be buffered prior to processing by the
exclusion partitions.

b the size of each exclusion count, in bytes.

Table 2. System Implementation Parameters

i.e. it is linear in the number of cameras in the system prior to
growth.

4. ANALYSIS

Here we describe the expected properties for an implemen-
tation of distributed exclusion based on our partitioning ap-
proach. Section 5 evaluates the properties measured for a real
implementation against the predictions made here. The prop-
erties of interest are:

• Network bandwidth – the input bandwidth for each ex-
clusion partition and the aggregate bandwidth between
the detection and exclusion layers.

• Memory – memory required within each partition.

Specifically, our aim is to relate these properties to the sys-
tem parameters defined in Tables 1 and 2. Such relationships
enable those engineering a surveillance system to provision
enough memory and network hardware to prevent degrada-
tion of system performance, due to paging (or worse, memory
exhaustion) and contention respectively, thus increasing the
probability of the system maintaining continuous availability.

4.1. Network Bandwidth Requirements

The input bandwidth required by a partition is determined by
the occupancy and padded occupancy data needed in the two
half partitions constituting the partition. The occupancy data
required in a half partition is that in the x co-ordinate range of
Eij which the half-partition represents. Similarly, the padded
occupancy data required corresponds to the y-axis range. The
size of the range in each case is the length (in cells) of a half-
partition, that is:

l = Rr =
nr√
2N

(17)

As with R in Equation 5, this is defined only where N ∈ 2N2

and N ≥ 2.
Now, observe from Figure 3 that there are only two con-

figurations of partitions:

1. For partitions on the diagonal of the partition grid, each
of the two half-partitions occupies the same co-ordinate
range in both x and y axes.



2. For all other partitions, the x co-ordinate range of one
half partition is the y co-ordinate range of the other
half-partition, and vice versa.

In both cases, a (whole) partition occupies a given (possi-
bly non-contiguous) range in the x dimension and the same
range in the y dimension, the total size of these ranges is
2l. Given that padded occupancy, pi, is computed from oc-
cupancy, ok, for k in the set of cells including i and its im-
mediate neighbours (within the same camera), all the padded
occupancy data needed in a partition can be computed from
the occupancy data that is also needed. Therefore the amount
of data per frame needed as input into a partition is simply the
amount of occupancy data, that is 2l bits. The unpartitioned
case (N = 1) is handled separately: the number of inputs per
frame is simply nr. With f frames per second this gives the
partition’s input bandwidth per second, βP , in bits per second:

βP =

{
nrf if N = 1
2lf = 2nrf√

2N
if N ∈ 2N2 ∧N ≥ 2 (18)

Now, in practice, the information sent over the network will
need to be encoded in some structured form, so the actual
bandwidth requirement will be some constant multiple of βP .

For N partitions, each on a separate host, the aggregate
bandwidth per unit time, βT , in bits per second, is:

βT =
{
nrf if N = 1
n
√

2Nrf if N ∈ 2N2 ∧N ≥ 2
(19)

4.2. Memory Requirements

Each exclusion partition requires memory for:

• Representation of two half partitions of the Eij matrix.

• Representation of two half partitions of the Oij matrix.

• Buffering occupancy data received from detection servers.

• Other miscellaneous purposes, such as parsing the XML
data received from the detection servers.

Globally, the Eij matrix requires one integer count for
each pair of camera cells, (i, j). The number of cell pairs is
r2n2, so the storage required for Eij in each partition is:

µE =
r2n2b

N
(20)

The Oij matrix is the same size as Eij . However, for
given i, Oij for all j identifying cells within a given camera
has the same value (as the cells identified by j are either all
available or all unavailable at a given point in time), so the
storage required for Oij in each partition is:

µO =
rn2b

N
=
µE
r

(21)

The occupancy data processed within a given partition is
produced by several detection servers. Hence it may be the
case that different occupancy data pertaining to a given time
point arrives at an exclusion partition at different times, and
in fact some fraction of data (typically very small) may not
arrive at all. To cope with this, occupancy data are buffered in
exclusion partitions prior to processing. Double buffering is
required to permit data to continue to arrive in parallel within
processing of buffered data. Each data item requires at least
two bits (to represent the absence of data as well as the oc-
cupied and unoccupied states). Using one byte per item, the
storage required for buffering within a partition is:

µB = 2dβP =

{
2dnrf if N = 1
4dnrf√

2N
if N ∈ 2N2 ∧N ≥ 2 (22)

Finally, exclusion partitions require memory for parsing
and connection management and for code and other fixed re-
quirements, the storage required for parsing and connection
management is proportional to the number of cameras pro-
cessed by the partition, whereas the remaining memory is
constant, so:

µM =
{
nµP + µC if N = 1

2n√
2N
µP + µC if N ∈ 2N2 ∧N ≥ 2 (23)

where µP and µC are constants determined empirically from
a given implementation.

5. EVALUATION

5.1. Experimental Environment

Our experimental platform is a cluster of 16 servers, each with
two 2.0Ghz dual-core Opteron CPUs and each server having
4 gigabytes of memory. We instantiate up to 32 exclusion
partitions (of size up to 2GB) on this platform.

Results are reported for running distributed exclusion for
surveillance networks of between 100 and 1,400 cameras and
between 1 and 32 partitions. The occupancy data is derived
by running detection pipelines on 2 hours footage from a real
network of 132 cameras then duplicating occupancy data as
necessary to synthesise 1,400 input files, each with 2 hours
of occupancy data. These files are then used as input for the
exclusion partitions, enabling us to repeat experiments. The
use of synthesis to generate a sufficiently large number of in-
puts for the larger tests results in input that contains an artifi-
cially high incidence of overlap, since there is complete over-
lap within each set of input replicas. The likely consequence
of this is that the time performance of exclusion computations
is slightly worse than it would be in a real network.



Parameter Value
N either 1, 2, 8 or 32 partitions.

n(for N = 1) 100, 200 or 300 cameras
n(for N = 2) 100, 200 or 400 cameras
n(for N = 8) 200 to 800 cameras in steps of 200
n(for N = 32) 200 to 1400 cameras in steps of 200

r each camera’s field of view is divided
into 12× 9 = 108 cells.

R determined from N and n.
f 10 frames per second.
d at most 2 seconds buffering delay.
b 2 bytes per exclusion count.

µP 250 KB storage overhead per-camera.
µC 120 MB storage overhead per-partition.

Table 3. Experimental Parameters
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5.2. Verification

Results are verified against the previous, non-partitioned im-
plementation of exclusion. It is shown in [5] that this previous
implementation exhibits sufficient precision and recall of the
ground truth overlap to support tracking. The partitioned im-
plementation achieve very similar results for the same data.
The differences arise because the distributed implementation
choose a simpler approach to dealing with clock skew. Adopt-
ing the more sophisticated previous approach would be feasi-
ble in the partitioned implementation, and would not affect
memory or network requirements, but would increase CPU
time requirements.

5.3. Performance Results

The parameters for our experiments are shown in Table 3. Pa-
rameters n, N and (by implication) R are variables, whereas
the remaining parameters have the constant values shown.
The µP and µC constants have been determined empirically.
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Fig. 7. Bandwidth into each partition

Figure 6 shows measurements of the arithmetic mean mem-
ory usage within each partition for the various configurations
tested. Also shown are curves computed from the memory
requirement formulae derived in Section 4.2. As can be seen,
these closely match the measured results. The standard devi-
ation in these results is at most 1.0 × 10−3 of the mean, for
the 8 partition/200 camera case.

Figure 7 shows measurements of the arithmetic mean in-
put bandwidth into each partition for the various configura-
tions tested. Also shown are curves computed from the net-
work bandwidth requirement formulae derived in Section 4.1,
scaled by a constant multiple (as discussed earlier), which
turns out to be 8. As one would expect, these closely match
the measured results. Notice that the bandwidth requirements
of the two partition case are the same as for the unpartitioned
case: both partitions require input from all cameras. The stan-
dard deviation in these results is at most 3.7 × 10−2 of the
mean, for the 32 partition/1200 camera case. The explana-
tion for this variance (in fact any variance at all) is that we
use a compressed format (sending only occupied cells) in the
occupancy data.

Figure 8 shows measurements of the arithmetic mean CPU
time within each partition for the various configurations tested.
Recall that the footage used for experimentation is two hours
(7,200 seconds) so all configurations shown are significantly
faster than real time. The standard deviation in these results is
at most 7.4× 10−2 of the mean, for the 32 partition/200 cam-
era case. Partitions in this case require a mean of 77 seconds
CPU time for 7,200 seconds real-time, with the consequence
that CPU time sampling effects contribute much of the vari-
ance. In contrast, the 32 partition/1400 camera case requires a
mean of 1,435 seconds CPU time for 7,200 second real time,
and has standard deviation of 1.6× 10−2 of the mean.

At each time step, exclusion executes O(n2) exclusion
tests (one for each pair of cells). Thus, we fit quadratic curves
(least squares) to the measured data to obtain the co-efficients
of quadratic formulae predicting the time performance for
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Fig. 8. CPU time used by each partition

each distinct number of partitions. These formulae are shown
as the predicted curves in Figure 8.

5.4. Discussion

Observe from Figures 6 and 8 that partitioning over just two
nodes delivers significant increases over the unpartitioned im-
plementation, at the cost of a second, commodity level, server.
There is some additional network cost arising from partition-
ing, for example the total bandwidth required in the two par-
tition case is twice that for the unpartitioned case with same
number of cameras, however the total bandwidth required is
relatively small in any case and thus is not expected to be
problematic in practice. The total memory required for a
given number of cameras is almost independent of the num-
ber of partitions, and the cost of this additional memory is
more than outweighed by the ability for the memory to be dis-
tributed across multiple machines, thus avoiding any require-
ment for expensive machines capable of supporting unusually
large amounts of memory.

The experiments validate the memory requirement formu-
lae from Section 4.2 and (trivially) the network bandwidth
formulae from Section 4.1. Using the memory formulae to-
gether with the empirically derived quadratic formulae fitted
to the curves in Figure 8, it is possible to determine the cur-
rent scale limit for exclusion to operate in real-time on typical
commodity server hardware. We take as typical a server with
16 GB memory and 2 CPUs: the current cost of such a server
is less than the cost of ten cameras (including camera instal-
lation). We instantiate two 8 GB partitions onto each such
server. Figure 9 shows the predicted memory and CPU time
curves for the 32 partition case extended up to 3,500 cameras.
As can be seen, the memory curve crosses the 8 GB require-
ment at about 3,200 cameras, with the CPU time curve cross-
ing 7,200 seconds at about 3,400 cameras, leading the conclu-
sion that a 16 server system can support over 3,000 cameras;
significantly larger scale than any previously reported results.
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Fig. 9. Scale limit for 32 partition system

This paper focuses on the use of exclusion to estimate
camera overlap, as it is only for this special case of activity
topology that the accuracy of the approach has (as yet) been
validated. Exclusion can be applied to general topology esti-
mation, and produces results that seem reasonable (however,
the extreme difficulty of obtaining ground truth has thus far
prevented quantitative validation). When applied to the gen-
eral case, the memory and processing requirements are con-
stant multiples of those for overlap; thus extrapolation from
results here is valid for the general case, in terms of prediction
of resource requirements.

6. PREVIOUS WORK

Activity topology has typically been learnt by tracking peo-
ple as they appear and disappear from camera fields of view
(FOVs) over a long period of time. For example, in [8] the de-
lay between the disappearance of each person from one cam-
era and their appearance in another is stored to form a set of
histograms describing the transit time between each camera
pair. The system is demonstrated on a network of 3 cam-
eras, but does not scale easily as it requires that correspon-
dences between tracks are given during the training phase
when topology is learnt.

Previous work by one of the authors [9] suggests an al-
ternative approach whereby activity topology is represented
by a Markov model. This does not require correspondences,
but does need to learn n2 transition matrix elements during a
training phase and so does not scale well with the number of
cameras n, due to the number of observations required for the
Markov model. The training phase required in this and sim-
ilar work is problematic in large networks, chiefly because
the camera configuration, and thus activity topology, changes
with surprising frequency; as cameras are added, removed,
moved and fail. Approaches requiring a training phase to
complete before operation would have to cease operation each



time there is a change, and only resume once re-training has
completed. This is an intolerable restriction on the availabil-
ity of a surveillance network. Instead, on-line automatic ap-
proaches, where topology is estimated concurrently with the
operation of surveillance, are desirable.

Ellis et al. [10] do not require correspondences or a train-
ing phase, instead observing motion over a long period of time
and accumulating appearance/disappearance information in a
histogram. Instead of recording known correspondences, it
records every possible disappearance that could relate to an
appearance. Over time, actual transitions are reinforced and
extracted from the histogram with a threshold. A variation
on this approach is presented in [11], and has been extended
by Stauffer [12] and Tieu et al. [13] to include a more rigor-
ous definition of a transition based on statistical significance,
and by Gilbert et al. [14] to incorporate a coarse to fine topol-
ogy estimation. These methods rely on correctly analysing
enough data to distinguish true correspondences, and have
only been demonstrated on networks of less than 10 cameras.

The patented approach of Buehler [15] appears to scale
to networks of about 100 cameras. It works by minimising a
distance metric between images in cameras within a set (ini-
tially one camera?) having known field-of-view relationships
and cameras whose relationships are as yet unknown, in or-
der to assign relationships to the latter set. In operating thus,
it supports growth of the network. In fact, it seems to rely on
discovering field-of-view relationships incrementally, and it
is unclear how this technique would cope with change in the
underlying topology (which might invalidate the known set).

7. CONCLUSION

This paper reports experimental results for a decentralised and
partitioned memory implementation of activity topology es-
timation by exclusion. This overcomes previous implemen-
tations’ dependence on a single central server, and as a re-
sult provides a more cost effective approach to activity topol-
ogy estimation for large surveillance networks. Results com-
paring partitioned and non-partitiioned exclusion demonstrate
the advantages of partitioning outweigh the costs. The par-
titioning scheme enables partitions to execute independently;
this both enhances performance (through increased parallelism)
and, more importantly, permits partitions to be added without
affecting existing partitions. Finally, formulae are derived for
the network and memory requirements of partitioned exclu-
sion. These formulae, verified by experimental results, enable
engineers seeking to use exclusion to determine the resources
required from the implementation platform.
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